
240 Int. J. High Performance Computing and Networking, Vol. 6, Nos. 3/4, 2010

Copyright © 2010 Inderscience Enterprises Ltd.

Caching personalised and database-related dynamic
web pages

Yeim-Kuan Chang*, I-Wei Ting and Yu-Ren Lin
Department of Computer Science and Information Engineering,
National Cheng Kung University, No. 1,
University Road, Tainan City 701, Taiwan
E-mail: ykchang@mail.ncku.edu.tw
E-mail: p7893113@mail.ncku.edu.tw
E-mail: p7895107@mail.ncku.edu.tw
*Corresponding author

Abstract: In recent years, web development is the most important application in internet.
Caching related technique improves the web server performance significantly. However, existing
caching schemes cannot deal with the dynamic web pages efficiently. Thus, in this paper, we
propose a caching scheme and then use web session objects and database-related dynamic web
cache to implement the dynamic web cache system in Tomcat web server. We show how to build
the dependency between dynamic web pages and the underlying database fields and session
objects. Our experimental results show that Tomcat with proposed dynamic web cache can
increase the stability of web server and improve web server throughput by up to 290%.

Keywords: dynamic web pages; cache; consistency; Tomcat; session objects.

Reference to this paper should be made as follows: Chang, Y-K., Ting, I-W. and Lin, Y-R.
(2010) ‘Caching personalised and database-related dynamic web pages’, Int. J. High
Performance Computing and Networking, Vol. 6, Nos. 3/4, pp.240–247.

Biographical notes: Y-K. Chang received his MS in Computer Science from University of
Houston at Clear Lake in 1990 and his PhD in Computer Science from Texas A&M University,
College Station, Texas, in 1995. He is currently a Professor in the Department of Computer
Science and Information Engineering at National Cheng Kung University, Tainan, Taiwan,
Republic of China. His research interests include computer architecture, multiprocessor systems,
internet router design, computer networking.

I-W. Ting received his MS in Computer Science and Information Engineering from Chaoyang
University of Technology, Taiwan, R.O.C., in 2004. He is currently working towards his PhD in
Computer Science and Information Engineering at National Cheng Kung University, Taiwan,
R.O.C. His current research interests include cache design system, cooperative caching and
broadcasting strategy.

Y-R. Lin received his MS in Computer Science and Information Engineering from National
Cheng Kung University, Taiwan, R.O.C., in 2005. His research interests include cache design
system in web server.

1 Introduction

As the internet traffic grows continuously, more and more
users browse their desired personalised or dynamic web
pages which are created dynamically based on the data
stored in the database system. This characteristic requires
web servers to generate and serve users the requested page
content dynamically. When the web server receives a
request for the dynamic content, it queries the database to
extract the relevant information needed to generate the
requested content dynamically. Even when the underlying
data retains the same value in the database, web servers
query the database and regenerate the same content of
dynamic web pages every time a request is received. As a
result, to improve the clients’ response time, one option is to

build a high performance website for improving network
and server capacity by deploying a state of the art IT
infrastructure. Another option is to use ‘load balancing’
structure among multiple web servers. It can be achieved by
migrating a document from a server to another and/or
replicating a document across more than a web server. DC-
Apache (Li and Moon, 2001) can dynamically manipulate
the hyperlinks embedded in web documents in order to
distribute access requests among multiple cooperating web
servers. To improve the web server performance, one
solution is to cache the result of requested content. The
cached copy may exist in client/browser, proxy, content
delivery networks (CDN), and the web server itself
described as follows. The Browser Cache caches the static

 Caching personalised and database-related dynamic web pages 241

request content in the hard-disk of clients. Like Internet
Explorer (IE) caches all requested content except it
recognises the request content is a dynamic web page. IE
does this simply by examining the extension of the request
content. If the extension is .jsp, .php, .asp, IE would not
cache it. If the request URL contains the cgi string, it is also
a dynamic web page request and IE would also not cache
it. Browser Cache improves the performance a lot, by
dispalying image files and, static content without reloading
them. However, the main problem of Browser Cache
is that it cannot make promise the current static content is
up-to-date and it cannot cache dynamic content.

Proxy Cache is used by ISPs, large corporations, schools
and workgroups as well as multi-pc home networks. It is
also designed to cache static content. When one user
accesses some static web content, proxy servers cache them
and update the lifetime of cached objects. Later, when
another user access to the same static web content, proxy
servers return the request content without re-requesting the
web servers. The main problem of Proxy Cache is similar to
Browser Cache but one advantage is proxy server has more
disk space to cache static content and the cached copy can
be shared by many clients.

Network-Wide Caches, implemented by CDN is to
deploy many CDN servers in the world-wide so that a large
fraction of requests can be served remotely rather than all of
them being served from the original web server. This
solution has the advantage of serving users via CDN servers
closer to them and reducing the traffic to the websites,
reducing network latency and providing faster response
time. Many companies provide CDN services as web
acceleration services. However, for many e-commerce and
personalised content, web pages are generated dynamically
based on the underlying database, rather than static
information. Therefore, content delivery by most CDNs is
limited to handle static portions of web pages rather than
dynamic content.

Server Cache does cache mechanism in the server side.
When web servers generate a dynamic content, they cache
this content at the same time. Later, when a request to the
dynamic content is received, web servers just return the
cached copy to the clients. This does not reduce the network
latency, but it improves the web server performance a lot.
The web servers have no need to access all underlying data
like database queries when serving a dynamic content
request.

In addition to determining where to cache, push-pull
(Bhide et al., 2002) discussed how to maintain data
consistency between servers and proxies. In the case of
servers adhering to the HTTP protocol, clients need to
frequently pull the data based on the dynamics of the data
and a user’s coherency requirements. In contrast, servers
that possess push capability maintain state information
pertaining to clients and push only those changes that are of
interest to a user. Their studies show that a push-based
approach is suitable when a client has stringent coherency
requirements or when communication overheads are the
bottleneck. A pull-based approach is better suited under less

stringent coherency requirements, when server
computational loads are the bottleneck, or when resilience
to failures is important. It focuses on the relationship
between servers and proxies, but is also useful for other
cache system.

Although dynamic web pages can be cached, sometimes
it gets better performance to generate the dynamic web
pages than maintain a cached copy. In particular, dynamic
web pages that change very fast like stock are not suitable to
cache.

In this paper, we implement a caching system in Tomcat
web server and deal with the cache problem of dynamic and
personalised web pages. The goal is to find all relevant
underlying data to dynamic web pages precisely. Thus, we
explore the database, find all table names and field names.
Then check if the MD5 of the requested content changes
when the column of one field is changed. If the MD5
changes, it means the database field is relevant to the
dynamic web pages. This is a brute-force method, but with
some tricks we can make the process faster. In particular,
most personalised website stores data in session objects. We
use the data in the session objects to generate dynamic
personalised web pages. These kinds of web pages are
session related. We also solve the problem of session related
dynamic web pages by signing in before accessing the MD5
of the requested content. Mapping session related dynamic
web pages to database fields can be done by this method.
When we emulate signing action, the data has already been
loaded from the database to the session objects. Later, these
session objects can be shared by the subsequent requests.
Our proposed cache system is implemented in Tomcat web
server and the dynamic web pages are JSP or servlet pages.
Therefore, we name it Tomcat Dynamic Web Pages
Caching System, or Tomcat Cache in short.

The rest of this paper is organised as follows. In
Section 2, we explain the system design and implementation
of our Tomcat caching system. In Section 3, we present
the performance results. The related work is reviewed in
Section 4. Last, we give our conclusions in Section 5.

2 System design and implementation

We first explain the process in Tomcat request-response
loop with proposed Tomcat Cache System. The flowchart is
shown in Figure 1. All steps are executed sequentially when
each request is received by Tomcat web server. We use the
Borland Optimizeit Profiler to trace all method calls
happened inside Tomcat. It also allows you to integrate the
profiler to most popular web servers easily, like IBM
webSphere 5, Oracle 9i, webLogic 8.1, BES 5.2.1, Jakarta
Tomcat 5, and Jboss 3.2. We configure it to integrate to
Tomcat 5 and run the CPU profiler to trace all method calls.
At the same time we launch the standard WebBench
benchmark suite, i.e., static benchmark suite (it accesses
thousands of static files in the wetree directory). After
WebBench finishes the static benchmark suite, we stop the
CPU profiler and see the result. The result is something like
Figure 2 which displays method call tracing of thread

242 Y-K. Chang et al.

http-80-Processor21. With Borland Optimizeit Profiler
result, we can trace what happens inside Tomcat. It displays
how much time a method is used in and under method and
how much time a method is used in invoked methods and
which methods are called by the current method.

Figure 1 Tomcat request-response loop with Tomcat cache
system

Figure 2 CPU profiler of http-80-Processor21 (see online
version for colours)

Figure 3 Architecture of Tomcat dynamic web pages caching
system

Tomcat Dynamic Web Pages Caching System

Core Caching System

Target URI list

Session URI list

Cached URI list

URIs to Database Fields
Mapping Table

Invalidator

Mapping_table.txt Target_files.txt session_files.txt

Database

The design idea of Tomcat Cache is to develop a
general caching system inside Tomcat, not for any particular
web application. The caching system is independent

from web applications, such that we do not have any
application-related code in Tomcat. The architecture of
Tomcat Cache is shown in Figure 3. The Core Caching
System and the Invalidator are main components.

At the initial state, Core Caching System loads
mapping_table.txt, target_files.txt and session_files.txt into
Target URI list, Session URI list and URIs to Database
Fields Mapping Table separately. When Tomcat serves a
request, Core Caching System would see if the request URI
is in the cached URI list. If yes, it returns the cached web
page. Otherwise, it generates the dynamic web page and
stores it into the cache.

The Invalidator runs periodically to check the update log
file of the database called Binary-Update-Log. If it finds
some fields are changed, it tells Core Caching System to
remove related URIs from cached URI list.

The main challenge of Tomcat Cache is to build a
mapping between the cached web pages and database fields.
DUP (Iyengar et al., 1999) builds the mapping manually.
Our goal is to construct the URIs to Database Fields
Mapping Table automatically by programs.

First of all, we extract the relevant information from the
web access log to know which URIs are accessed in this
web server. We exclude all static content (e.g., image files,
html files) and extremely dynamic content (e.g., verify.jsp
which is used to verify if user name and password are
valid). We find the URIs of the dynamic web pages that is
suitable to be cached in target_files.txt. We map them by the
following steps:

Step 1 Start the Tomcat web server and MySQL database
server. Backup all database tables.

Step 2 Get one URI from the target_files.txt.

Step 3 Get one field from the database fields, e.g.,
camera.price that is a combination of table name
and a field name.

Step 4 Access the URI and record the MD5 of the
requested content.

Step 5 Change all values of this field. If the type of the
field is String we set it to null then recover it back
to the original value next time. If the type of the
field is int or float, we add 10 to it.

Step 6 Access the URI again and get the MD5 of the
requested content. Then compare the new MD5
with the former MD5 and see if they are different.
If yes, it means the field we changed is related to
the URI.

Step 7 Go back to Step 3, until all database fields are
examined.

Step 8 Go back to Step 2, until all URIs are examined.

Step 9 Restore the database and save the result to
mapping_table.txt.

Using the steps described above, we can find the
relationship between URIs and database fields. However,

1. Pick a thread from the thread pool to serve the request

2. Initialise Http Processor, Request, Response,
InternalInputBuffer, InternalOutputBuffer

3. Open a socket connection to read the request

4. Parse request line, headers, parameters, cookies and
session id

5. Proposed Tomcat Cache system

6. Map the URI to the context, wrapper

7. Process the specified request

8. Finish response

 Caching personalised and database-related dynamic web pages 243

some web pages, especially personalised web pages use
session objects to save data grabbed from the database and
create dynamic web pages by the information in the session
objects. These web pages are designed to load personalised
data from the database after user’s login, then save these
data to session objects for future use. This scheme is widely
used and largely improves web server performance, because
the web server does not need to access the database each
time it creates a personalised web page but uses data stored
in session objects to create personalised web pages.
Therefore, web pages depend on the session objects and
session objects depend on some database fields. We call the
kind of relationship indirect mapping.

For example, when a user signs in, verify.jsp checks if
the user is valid. If the user is valid, verify.jsp loads user
related data from the database into the session objects. Then
in the same session all requests can use the data in the
session objects.

When we want to find the indirect relationship between
URIs and database fields, we should emulate our web client
logins to the website then access the URI content. But how
does Tomcat maintain session connection? We use Web
Performance Trainer 2.7 to record the process of the web
pages access actions. We use Web Performance Trainer
only for recording HTTP request header and response
header. When Web Performance Trainer 2.7 starts the
benchmarking process, it launches IE. Then records each
step what IE does, including the session connection, the
cookies, and the form inputs. After recording the web pages
you want to benchmark, web Performance Trainer 2.7
displays each state of request and response. We use this tool
to find out Tomcat session scheme.

After we know how Tomcat maintains a session, we can
emulate our clients to use sessions and find out the indirect
mapping. We map them by the following steps:

Step 1 Start the Tomcat web server and MySQL database
server. Backup all database tables.

Step 2 Get one URI from the target_files.txt.

Step 3 Get one field from the database fields, e.g.,
camera.price that is a combination of the table
name and a field name.

Step 4 Emulate login process by one of the user/password
then get the value of JSESSIONID.

Step 5 Access the URI with the JSESSIONID cookie and
record the MD5 of the requested content.

Step 6 Change all values of this field. If the type of the
field is String we set it to null then recover it back
to the original value next time. If the type of the
field is int or float, we add 10 to it.

Step 7 Access the URI with the JSESSIONID cookie
again and get the MD5 of the requested content.
Then compare the new MD5 with the former MD5
and see if they are different. If they do, it means
the field we changed is related to the URI.

Step 8 Go back to Step 3, until all database fields are
examined.

Step 9 Go back to Step 2, until all URIs are examined.

Step 10 Restore the database and save the result to
mapping_table.txt.

With session detection, we can build the relationship of
indirect mapping.

We implement the Core Caching System inside Tomcat
web server. When Core Caching System starts up, it loads
target_files.txt to Target URI list, mapping_table.txt to URIs
to Database Fields Mapping Table, and session_files.txt to
Session URI list. Target URI list is used to check if the
requested URI is our target URI. If it isn’t, the request
breaks the caching system checking condition, decreases the
overhead of caching system. Session URI list is used
to check if the request URI is session-related. If it is a
session-related request, Core Caching System adds the
session information to the id of cached object. Cached URI
list is used to check if the request URI is cached. If the
request URI is in the cached URI list, Core Caching System
redirects the request URI to the cached object URI. When
the invalidator detects some database fields changed, it
notifies Core Caching System to remove the associating
URI from the cached URI list. URIs to Database Fields
Mapping Table is static and immutable, and provides the
mapping information between URIs and database table
fields. When a request is received, the Core Caching System
checks if the content of the requested page is cached. If it
finds a valid cached copy, it redirects the request URI
to the URI of the cached content. Therefore, we implement
the Core caching system after Tomcat parsed the
request URI and before Tomcat maps the request to
associating context, wrapper. This location is in the
org.apache.coyote.tomcat5.CoyoteAdapter.service()
method. In particular, we need to find out where we
implement the Core Caching System. When a request is
received, the Core Caching System checks if the response
content of the request is cached. If it finds a valid cached
copy, it redirects the request URI to the URI of the
cached content. Therefore, we also implement the Core
Caching System after Tomcat parsed the request
URI and before Tomcat maps the request to associating
context, wrapper. This location is in the
org.apache.coyote.tomcat5.CoyoteAdapter.service()
method.

Now we explain how to use Binary Update Log to
implement invalidator. The Binary Update Log contains all
SQL statements that update data. MySQL logs only
statements that actually change the data. For example, a
delete statement that fails to affect any rows is not logged.
Update statements that set column values to their current
values are also not logged. MySQL logs updates in
execution order. Such that when the Invalidator parses the
log, it skips all processed data and only parses new ones.

Launching MySQL with the --log-bin argument starts
the Binary Update Log. If you do not specify the filename,
MySQL uses the hostname-bin as the default filename, in

244 Y-K. Chang et al.

our example it is ren-bin. MySQL appends a numeric index
to the end of the filename so that the file looks like
ren-bin.001. When MySQL server restarts or refreshes or
the log reaches the maximum log size, MySQL creates
another log file like ren-bin.002 to log. MySQL also creates
an index file that contains a list of all used binary log files.
By default, the file is named something like ren-bin.index.
You may change the file name or path of the index file with
the --log-bin-index=file option.

We implement the Invalidator Thread as a thread inside
Tomcat so that it is easy to communicate with the Core
Cache System. The thread starts to run when the
RenTomcat.getRenTomcatInstance() is called in the first
time. The Invalidator Thread runs periodically to check if
some data is changed by the Binary Update Log. Binary
Update Log logs all update SQL statements in execution
order. Therefore, the Invalidator Thread does not need to
parse through the whole log file, instead it starts to parse
from the last time it checked. The incremental parsing
improves performance a lot. The Invalidator Thread
runs periodically, using the period saved in valiable
TomcatConstant.POLLING_TIME. When it wakes up, it
reads the Binary Update Log last parsed into a string. Then
it finds the table name and field name from the update
statements by regular expression. Actually, we should have
more regular expression patterns to extract table name and
field name from all possible update SQL statements.
However, it depends on how the programmers write SQL
statement codes.

3 Performance evaluation

In this section, we present our performance gain and the
overhead of our web cache system. We use one PC and one
laptop as the web clients and another PC as the web server.
All PCs are connected by the SMC switch. The network
configuration is as Figure 4. The system and software
configuration for each component are as follows:

• DBMS: MySQL 4.0.15 is used as the database system
and it runs on the same machine as Tomcat web server
runs, AMD 2500+ with 1G byte main memory running
Windows XP SP2.

• Switch: SMC SMC2804WBR.

• JVM: Sun Java(TM) 2 SDK, Standard Edition
1.4.2_03.

• Server: Tomcat 5.0.24 is the web server. We run it with
the parameter JAVA_OPTS = -server –Xms128m –
Xmx384m which makes it run faster. –server means it
runs in server mode, JVM ignores keyboard, mouse
events. –Xms128m means JVM runs with initial
128M byte main memory and –Xmx384m is the
maximum available memory JVM that can be used.

• Laptop web client: We run WebBench controller and
client on this laptop machine, Intel Pentium 4
1,600 MHz with 768M byte main memory.

• PC web client: We run WebBench client on this PC
machine. It communicates with laptop WebBench
controller and runs web load at the same time. Intel
Pentium 4 3,000 MHz with 1G byte main memory.

Figure 4 Network configuration (see online version for colours)

WebBench (http://www.veritest.com/benchmarks) is used to
emulate many clients that send requests to web servers. It is
a closed-loop benchmark tool such that clients do not send
requests faster than the server can respond. One controller is
responsible for cooperating these clients to run one mix.
After one mix finished, all statistic data items are collected
at the controller and presented as a Microsoft Excel
document.

We set the Ramp Up, Ramp Down, and Length to 5 sec,
5 sec and 30 sec, respectively. It means in each
mix we record only 20 seconds. Because our website is
session-related, we check the Enable Cookie Support
option, such that WebBench treats each mix of a client as
single session and they can share the same session objects.
In the mix configuration, we configure WebBench to run
each mix three times, each mix use two clients, i.e., PC
client and laptop client. Engine-per-client is added by one
incrementally until total engine-per-client reaches ten.
Therefore, we have 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 clients
tested.

Figure 5 shows the result of performance comparison
according to requests per second. Original means the
original Tomcat web server without web cache system,
while web cache means Tomcat web server with proposed
web cache system. We can see that Tomcat with proposed
web cache system can serve more requests, up to 800
requests per second, while the original Tomcat can only
serve 270 requests per second. Thus a 290% throughput
improvement over the original web server is obtained. With
web cache enabled, Tomcat does not need to request
database each time a database-related request comes in and
does not need to regenerate the dynamic web pages which
contain the same data. Another observation is that web
cache performs much smoother than the original. Because
web cache serves dynamic web pages request by cached
copy, it uses less system resource, like socket connections,
process context switch, etc. While the original Tomcat
generates database-related dynamic web pages, it queries
the database then recomputes the dynamic web pages,
spends much more CPU time.

 Caching personalised and database-related dynamic web pages 245

Figure 6 shows the performance comparison in average
response time. Note that web cache system is still more
stable than the original Tomcat. When 20 clients request the
original web server, the average response time is worse than
90 milliseconds. Figure 7 shows that the original curve of
response time standard deviation grows much faster when
clients increase. We can conclude web cache system is more
stable than original Tomcat web server.

Figure 5 Performance comparison on requests per second
(see online version for colours)

Comparison on Requests per second

0.000
100.000
200.000
300.000
400.000
500.000
600.000
700.000
800.000
900.000

2_
cli

ent

4_
cli

ent

6_
cli

ent

8_
cli

ent

10
_cl

ien
t

12
_cl

ien
t

14
_cl

ien
t

16
_cl

ien
t

18
_cl

ien
t

20
_cl

ien
t

Number of clients

Re
qu

es
ts

pe
r s

ec
on

d

original
web cache

Figure 6 Response time comparison (see online version for
colours)

Average Response Time

0.000
10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000

100.000

2_
cli

ent

4_
cli

ent

6_
cli

ent

8_
cli

ent

10
_cl

ien
t

12
_cl

ien
t

14
_cl

ien
t

16
_cl

ien
t

18
_cl

ien
t

20
_cl

ien
t

Number of Clients

Re
sp

on
se

 T
im

e
(m

s)

original
web cache

Figure 7 Response time standard deviation comparison
(see online version for colours)

Response Time Standard Deviation Comparison

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000

2_
cli

ent

4_
cli

ent

6_
cli

ent

8_
cli

ent

10
_cl

ien
t

12
_cl

ien
t

14
_cl

ien
t

16
_cl

ien
t

18
_cl

ien
t

20
_cl

ien
t

Number of clients

Re
sp

on
se

 T
im

e
St

an
da

rd
 D

ev
ia

tio
n

(m
s) original

web cache

4 Related work

There are various ways to accelerate access
of dynamic web pages. Oracle Database Cache
(http://www.orafaq.com/faqicach.htm) is a database-
replicated cache directly associated with Oracle9i Database,
not with any particular application. A copy of the data is
loaded from the database into the database cache, which is
on the middle tier and, therefore, closer to the application
for faster access. Queries are made locally to the database
cache instead of across the network to the original database,
such that saving costly round trips and eliminating network
latency. However, it cannot reduce the redundancy arising
from the web server to the database server computations.
Furthermore, due to the consistency between the data cache
and the original database, it requires heavy database-cache
synchronisation overhead.

Another scheme is Oracle Web Cache
(http://www.oracle.com/technology/products/ias/web_cache
/index.html). It is a HTTP-level cache, maintained outside
the application, providing very fast cache operations. It is a
pure, content-based cache, capable of caching static or
dynamic data with time-based, application-based, or
trigger-based invalidation of the cached pages. However, it
does not provide a mechanism through which updates in the
underlying data can be used to identify which web pages in
the cache to be invalidated. The use of triggers for this
purpose is very inefficient and may introduce a large
overhead on the underlying database system, defeating the
original purpose.

DUP (Iyengar et al., 1999) maintains data dependence
information manually between cached objects and the
underlying data which affect their values in a graph. In the
proposed scheme (Challenger et al., 2004), they improved
the system to general multitier architectures and add a set of
algorithms that have been deployed for high-performance
serving of dynamic content to many clients at highly
accessed websites. The disadvantage of DUP is that it
maintains the dependence graph manually, such that each
time a new data source or some new web pages are added to
the website, the administrator should rebuild the graph. It
takes a lot of time, and not efficient.

Class-based Cache (Zhu and Yang, 2001), offers a
complementary solution for applications that require
coarse-grain cache management. Their approach allows
users to specify coarse-grain dependence among underlying
datasets and groups of dynamic pages called URL classes
which share common URL patterns or client information.
As a consequence, application programmers do not need to
enumerate data dependences for individual pages. This
scheme also supports group-based invalidation of pages
which share common patterns and these patterns can be
unknown to the cache in advance. This solution in general
fits into applications with relatively slower changing data.

There are two schemes proposed by Li (2004) and
Candan et al. (2001). They further develop another method
to build the dependence graph automatically. They build a
query logger into the JDBC driver as a JDBC wrapper, then
each time the Java web servers do database queries, the

246 Y-K. Chang et al.

sniffer can capture the queries that are sent to the database
by the web server. They also develop another request logger
to capture current requests. Then combine these two loggers
into a sniffer module. When the web server receives a
dynamic web page request which queries database, the
request logger captures the current request URL and the
query logger extract the SQL statements, then
sniffer module maps the two information to build a
Request-to-Query Mapping table which they called QI/URL
map. The disadvantages of this method include:

1 They implement the cache system outside the
application server. This makes something difficult like
getting the information of request URI, cookies, and
session objects.

2 Not everything they captured by the query logger is
relevant to the requested web page. For example, real
world applications do deploying logging and tracking
functions and use a dedicated database table to store
such information.

All the logging and tracking information is written to the
database table before or on returning the requested pages to
the user. All logging database operations that do not affect
the freshness of a cached page are captured also by the
query logger. Such that they develop a GUI tool to
distinguish some related data source from non-related one.
However, it seems their automatical method goes back to
manual method.

WebGraph (Mohaptra and Chen, 2002) develops a
framework called WebGraph that helps in improving the
response time for accessing dynamic objects. The
WebGraph framework manages a graph for each of the web
pages. The nodes of the graph represent weblets, which are
components of the web pages that either stay static or
change simultaneously. The edges of the graph define the
inclusiveness of the weblets. Both the nodes and the edges
have attributes that used in managing the web pages. Instead
of recomputing and recreating the entire page, the node and
edge attributes are used to update a subset of the weblets
are then integrated to form the entire page. In addition,
WebGragh can achieve the lower response time.

The performance comparison of proposed dynamic web
technologies can be found in Titchkosky et al. (2003).

5 Conclusions and future work

We present a method to solve the problem of mapping
request URIs to the underlying database fields. Furthermore,
with session objects detection mapping, dynamic web pages
that use numerous session objects to save personalised data
can also be detected and cached. This important feature
helps a lot real world web applications that offer
personalised service. In addition to the framework design,
we implement the system in Tomcat. Our experimental
results show that our proposed caching system improves the
Tomcat throughput on dynamic web pages by up to 290%.

Future work includes extending our solutions to improve
the performance of session-based dynamic web pages. In
current solution, if one of the personalised underlying data
changes, all the other cache web pages of session-based
dynamic web pages would be invalidated. This decreases
performance of cache system greatly. In order to solve this
problem, we should build application-based cache system to
improve the performance. So, the cache system would be
able to distinguish the relation between underlying data and
cached web pages. Our performance evaluation setting is
based on the LAN network. In the future, we will
benchmark it in a WAN network environment which can be
archived by WAN emulation (Williamson et al., 2002).

Acknowledgements

We are grateful for the supporting resources provided by
NSC in Taiwan. This work was supported by the National
Science Council, Republic of China, under Grant
NSC-96-2221-E-006-190-MY3.

References
Bhide, M., Deolasee, P., Katkar, A., Panchbudhe, A.,

Ramamritham, K. and Shenoy, P.J. (2002) ‘Adaptive
push-pull: disseminating dynamic web data’, IEEE Trans.
Computers, Vol. 51, No. 6, pp.652–668.

Candan, K.S., Li, W-S., Luo, Q., Hsiung, W-P. and Agrawal, D.
(2001) ‘Enabling dynamic content caching for database-
driven web sites’, SIGMOD Conference.

Challenger, J., Dantzig, P., Iyengar, A., Squillante, M.S. and
Zhang, L. (2004) ‘Efficiently serving dynamic data at highly
accessed web sites’, IEEE/ACM Trans. Netw, Vol. 12, No. 2,
pp.233–246.

Iyengar, A., Challenger, J. and Dantzig, P. (1999) ‘A scalable
system for consistently caching dynamic web data’,
INFOCOM, pp.294–303.

Li, Q. and Moon, B. (2001) ‘Distributed cooperative apache web
server’, in Proceedings International WWW Conference, p.10,
Hong-Kong.

Li, W-S., Hsiung, W-P., Po, O., Hino, K., Candan, K.S. and
Agrawal, D. (2004) ‘Challenges and practices in deploying
web acceleration solutions for distributed enterprise systems’,
WWW Conference, pp.297–308.

Mohaptra, P. and Chen, H. (2002) ‘WebGraph: a framework for
managing and improving performance of dynamic web
content’, IEEE Journal on Selected Areas in Communications
(JSAC), September, Vol. 20, No. 7, p.1414.

Titchkosky, L., Arlitt, M.F. and Williamson, C.L. (2003) ‘A
performance comparison of dynamic web technologies’,
SIGMETRICS Performance Evaluation Review, Vol. 31,
No. 3, pp.2–11.

Williamson, C.L., Simmonds, R. and Arlitt, M.F. (2002) ‘A case
study of web server benchmarking using parallel WAN
emulation’, Performance Evaluation, September, Vol. 49,
Nos. 1–4, pp.111–127.

Zhu, H. and Yang, T. (2001) ‘Class-based cache management for
dynamic web content’, INFOCOM, pp.1215–1224.

 Caching personalised and database-related dynamic web pages 247

Websites
Oracle Database (iCache) Cache FAQ,

http://www.orafaq.com/faqicach.htm.
Oracle Web Cache,

http://www.oracle.com/technology/products/ias/web_cache/.
WebBench 5.0,

http://www.veritest.com/benchmarks.

